Root-Zone Update

Alternative substrates!
Fertilizer!
Media testing!

Holly Scoggins
Virginia Tech Perennials Program

Copy of presentation:
perennials@vt.edu

FINE PRINT: Dr. Scoggins/Virginia Tech does not endorse the products, vendors, or documentation referenced in this presentation. Any mention of vendors, products, or services is for informational purpose only.

The “Rootzone Triangle”

Irrigation

Greenhouse? Outside?

Media

Fertilizer

Substrate update

COMPOSTED BARK

“Nursery” media
“Perennial” mixes

Peat-lite mixes

SPHAGNUM PEAT

Price difference?
Bark: scarcer than hen’s teeth?
- Byproduct of lumber/pulp industry
- Slowed due to lack of construction/crappy economy
- USDA Biomass Crops Assistance Program (BCAP) subsidy of $45/ton for switchgrass, forestry products
- Price goes up, availability goes down

Sphagnum peat moss
- low pH
- 3.0-4.0
- Very low mineral content
- Great moisture retention

Peat & sustainability
- www.peatmoss.com

Aggregates
- Increase air space, drainage, decrease bulk density
- Vermiculite
 - Moderate pH (depends on source)
 - Good cation exchange capacity (CEC)
 - Bit of K, Mg, Ca
 - Perlite
 - Virtually inert
 - Fluoride?

Bark pile
- Turn frequently
- Add moisture if needed

Perlite
- Virtually inert

Vermiculite
- Virtually inert
Whole trees

- LOTS of research – Virginia Tech, NC State, Auburn, corporate R&D
- Loblolly Pine (South) or Eastern White Pine (North)
- Whole trees are chipped and ground in a hammermill
 - (with or without bark, limbs, needles)
- Or clean chip residual – byproduct of tree harvesting process
 - (40% pine wood, 50% bark, and 10% needles)
Commercial sources
- Fafard TT is a new blend of proprietary components
 - “TimbaTek” + peat + aged pine bark
 - Note lighter color - even when wet

Coir
- By-product of Piña Coladas
- Water holding capacity
 - Comparable to peat
- CEC
 - Lower?
- pH varies
- Soluble Salts
 - Higher
 - Na K Cl
 - KCl fertilizer
- Supply/availability?

Coir – new products
- Coir from Mexico (Agrococo, others)
 - Whole husk
 - Low sodium but potassium through the roof
 - EC 3.5 dS/m
Coir – new products
- Coco Crunch (!)
- Van der Knaap (Netherlands)
- Product of Dominican Republic (proximity!)
- EC 0.9 dS/m
- Ships in compressed 56.5 cu ft bales

Parboiled Rice hulls
- Research at Mississippi State in mid-90s gave thumbs-up
- Dr. Mike Evans, Arkansas, current work
- Use for aeration/aggregate substitute for perlite/vermiculite (Perlite Institute no likey)
- Pointy bits
- Appearance

<table>
<thead>
<tr>
<th>Substrate composition</th>
<th>Bulk density (g/cm³)</th>
<th>Avg particle density (g/cm³)</th>
<th>Total porosity (%)</th>
<th>Air-filled porosity (%)</th>
<th>Water holding capacity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% peat/30% bulk</td>
<td>0.80</td>
<td>0.51</td>
<td>76.7</td>
<td>12.6</td>
<td>10.4</td>
</tr>
<tr>
<td>70% peat/30% bulk</td>
<td>0.83</td>
<td>0.58</td>
<td>76.7</td>
<td>12.6</td>
<td>10.4</td>
</tr>
<tr>
<td>50% peat/50% bulk</td>
<td>0.83</td>
<td>0.58</td>
<td>74.0</td>
<td>12.7</td>
<td>10.3</td>
</tr>
<tr>
<td>40% peat/60% bulk</td>
<td>0.80</td>
<td>0.64</td>
<td>69.0</td>
<td>12.2</td>
<td>9.8</td>
</tr>
<tr>
<td>90% rice husk</td>
<td>0.20</td>
<td>0.69</td>
<td>66.6</td>
<td>12.2</td>
<td>5.4</td>
</tr>
<tr>
<td>90% rice husk</td>
<td>0.20</td>
<td>0.69</td>
<td>67.9</td>
<td>11.8</td>
<td>5.6</td>
</tr>
<tr>
<td>90% rice husk</td>
<td>0.20</td>
<td>0.76</td>
<td>67.4</td>
<td>13.7</td>
<td>55.8</td>
</tr>
<tr>
<td>90% rice husk</td>
<td>0.20</td>
<td>0.76</td>
<td>67.4</td>
<td>13.7</td>
<td>55.8</td>
</tr>
</tbody>
</table>

Switchgrass – what can’t it do...
- New study from James Altland (USDA Wooster, OH)
- Limited study but hammermilled/screened Panicum virgatum worked well as a growing substrate!
- Nice airspace
- pH on the high side (6.5-7.5), poor buffering
- Need Ca source other than dolomitic lime
Substrate additives: Mycorrhizae
- Endomycorrhizae added to growing media
- I have opinions on this that may differ from yours.
- Arguments: $5 or a pint of beer

Substrate additives: Biocontrols
- Bacteria (Bacillus) “protect plant roots from disease organisms”
 - Cease, Subtlex, Companion
- Bacteria (Streptomycyces)
 - Actinoiron, Actinovate, Mycostop
- Fungi
 - Gliocladium – Presto, SoilGard
 - Trichoderma - Rootshield

Fertilizer update
- New controlled-release fertilizers
 - Scotts Professional now Everris
 - “Fusion Technology”
 - The “no-spill prill”
 - Kudos from some perennial growers...
 - 19-6-9, 5-6 month
 - 20-4-7, 8-9 month

New controlled-release fertilizers
- Osmocote 12-7-18 (w/micros)
 - “mini-prill” – 2-3 months @ 70 F avg. soil temp
 - in trials, not yet on the market
Water Soluble Fertilizer

- Trends
 - Less phosphorus. MUCH less phosphorus.
 - More attention on micros (chelated delivery), higher iron

Jack’s FeEDs

- Low P, higher micros esp. chelated iron (EDTA, EDDHA, DTPA)
 - Chelation keeps Fe available over wide range of pH
 - 15-2-20 Spring Pansy feed for early perennial crops
 - High nitrate-N (low ammonium)
 - Lotsa iron

Plantex “No Stretch”

- For use late in production cycle
- 60% nitrate
- NO phosphorus
- Higher potassium

Substrate testing

- You ARE testing your media, right?

What to test:

- Media
- Water soluble fertilizer?
 - Check injectors
 - EC guidelines on fertilizer bags
 - What should be coming out of the hose “end”

Using the PourThru Method for Perennials

- Easiest way to check pH and EC
- CLF
 - One hour after fertigation
- Controlled release
 - One hour after irrigation
Calibrate your meter…

Apply enough distilled water to get ~50 ml of leachate…

How much water to add?

Collect leachate after a few minutes…

Measure and record pH and EC

What to look for…

- pH
 - Range of 5.4-6.2
 - Not as crucial with a complete CLF
- EC
 - Range of 0.5-4.0
 - Species-specific…

Quart: 75 ml

"Trade" gallon: 100 ml

Full gallon+: 125-150 ml
Salvia nemerosa
EC and Dry Weight

Astilbe chinensis
EC and Dry Weight

Phlox paniculata 'David' – 8 wks

EC ranges for use with the PourThru (mS/cm)

<table>
<thead>
<tr>
<th></th>
<th>Lower Fertility</th>
<th>Moderate Fertility</th>
<th>Higher Fertility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phlox paniculata 'David'</td>
<td>50 ppm N</td>
<td>200 ppm N</td>
<td>350 ppm N</td>
</tr>
<tr>
<td>Heuchera sanguinea</td>
<td>0.75 – 2.00</td>
<td>2.01 – 3.5</td>
<td>3.6 – 5.0</td>
</tr>
<tr>
<td>Physostegia virginica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scabiosa columbaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dianthus plumarius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvia nemerosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astilbe chinensis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campanula carpatica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coreopsis verticillata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaara lindheimeri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamium maculatum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perovskia atriplicifolia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veronica x 'Goodness Grows'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penstemon x 'Sour Grapes'</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Irrigation impacts fertility
- Subirrigation?
- Excess nutrients not removed by leaching
- EC rises over time
- Apply 30-50% less fertilizer

New: Direct measurement probes
- FieldScout EC probe by Spectrum Technologies
- W.E.T. sensor with HH2 Meter (Delta-T, distributed by Dynamax)
- Other brands, too
Potential nutrition problems...

- **Nitrogen** form
- High NH$_4^+$ ratio = decreases pH
- High NO$_3^-$ ratio = increases pH
- Watch for pH “creep”
 - 15-16-17 or 20-10-20: acidifying
 - Remedy: calcium nitrate or a complete fertilizer with high nitrate-N to ammonium-N ratio

Environmental conditions

- Can dictate nutrient requirements
- Cool, cloudy weather
- If media has high WHC, may not get to fertigate
- Switch to low- or no-ammonium feed

Acidity and Basicity of Common Fertilizers

<table>
<thead>
<tr>
<th>Acid</th>
<th>Neutral</th>
<th>Basic</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-10-20</td>
<td>15-16-17</td>
<td>15-5-15</td>
</tr>
<tr>
<td>9-45-15</td>
<td></td>
<td>15-0-15</td>
</tr>
<tr>
<td>10-30-20</td>
<td>15-0-0</td>
<td></td>
</tr>
<tr>
<td>20-20-20</td>
<td>13-0-44</td>
<td></td>
</tr>
<tr>
<td>21-7-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100+ formulations at: http://www.msue.msu.edu/ae/floriculture/Formulations1.PDF
Potential nutrition problems…
- A lot depends on time-span of production
- Ca & Mg incorporated pre-plant…
- Can be excessive leaching in outdoor production
- Supplement with Epsom salts and/or calcium nitrate or use a CalMag fertilizer formulation

Deficiencies effect both shoot and root growth
- Iron deficiency in Verbena canadensis ‘Homestead Purple’, 14 DAT
- Nitrogen deficiency in Helianthus annuus ‘Bressingham Doubloon’, 14 DAT
- Calcium deficiency in Veronica ‘Goodness Grows’, 14 DAT
- Phosphorus deficiency in Veronica, 14 DAT

Bonus: new pots
Questions?

Echinacea thoughts
- Keep EC low (very low going into overwintering)
- pH